Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474476

RESUMO

Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in signal transmission across multiple scales and structural abnormalities. The development of effective antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such as lysergic acid diethylamide (LSD). This has led to structural research and drug development of the receptors that they target. This review provides breakthroughs and achievements in the structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy (cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These high-resolution structures can be used for the development of novel ADs using virtual drug screening (VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as therapeutic targets. Using structural information, a series of highly selective ADs were designed based on the different role of receptors in MDD. These molecules have the favorable characteristics of rapid onset and low adverse drug reactions. This review offers researchers guidance and a methodological framework for the structure-based design of ADs.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Serotonina , Estrutura Molecular , Microscopia Crioeletrônica , Antidepressivos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Front Bioeng Biotechnol ; 11: 1254356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37823027

RESUMO

Chemotherapy often faces some obstacles such as low targeting effects and drug resistance, which introduce the low therapeutic efficiency and strong side effects. Recent advances in nanotechnology allows the use of novel nanosystems for targeted drug delivery, although the chemically synthesized nanomaterials always show unexpected low biocompability. The emergence of exosome research has offered a better understanding of disease treatment and created novel opportunities for developing effective drug delivery systems with high biocompability. Moreover, RNA interference has emerged as a promising strategy for disease treatments by selectively knocking down or over-expressing specific genes, which allows new possibilities to directly control cell signaling events or drug resistance. Recently, more and more interests have been paid to develop optimal delivery nanosystems with high efficiency and high biocompability for drug and functional RNA co-delivery to achieve enhanced chemotherapy. In light of the challenges for developing drug and RNA co-delivery system, exosomes have been found to show very attractive prospects. This review aims to explore current technologies and challenges in the use of exosomes as drug and RNA co-delivery system with a focus on the emerging trends and issues associated with their further applications, which may contribute to the accelerated developments of exosome-based theraputics.

3.
Cells ; 11(19)2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36230934

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine protease synthesized primarily by the liver. It mainly promotes the degradation of low-density lipoprotein receptor (LDL-R) by binding LDL-R, reducing low-density lipoprotein cholesterol (LDL-C) clearance. In addition to regulating LDL-R, PCSK9 inhibitors can also bind Toll-like receptors (TLRs), scavenger receptor B (SR-B/CD36), low-density lipoprotein receptor-related protein 1 (LRP1), apolipoprotein E receptor-2 (ApoER2) and very-low-density lipoprotein receptor (VLDL-R) reducing the lipoprotein concentration and slowing thrombosis. In addition to cardiovascular diseases, PCSK9 is also used in pancreatic cancer, sepsis, and Parkinson's disease. Currently marketed PCSK9 inhibitors include alirocumab, evolocumab, and inclisiran, as well as small molecules, nucleic acid drugs, and vaccines under development. This review systematically summarized the application, preclinical studies, safety, mechanism of action, and latest research progress of PCSK9 inhibitors, aiming to provide ideas for the drug research and development and the clinical application of PCSK9 in cardiovascular diseases and expand its application in other diseases.


Assuntos
Doenças Cardiovasculares , Ácidos Nucleicos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , LDL-Colesterol/metabolismo , Humanos , Lipoproteínas VLDL , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Pró-Proteína Convertase 9/metabolismo , Subtilisinas
4.
J Control Release ; 349: 679-698, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35878728

RESUMO

Extracellular vesicles (EVs) are heterogeneous membranous vesicles secreted by living cells that are involved in many physiological and pathological processes as intermediaries for intercellular communication and molecular transfer. Recent studies have shown that EVs can regulate the occurrence and development of tumors by transferring proteins, lipids and nucleic acids to immune cells as signaling molecules. As a new diagnostic biomarker and drug delivery system, EVs have broad application prospects in immunotherapy. In addition, the breakthrough of nanotechnology has promoted the development and exploration of engineered EVs for immune-targeted therapy. Herein, we review the uniqueness of EVs in immune regulation and the engineering strategies used for immunotherapy and highlight the logic of their design through typical examples. The present situation and challenges of clinical transformation are discussed, and the development prospects of EVs in immunotherapy are proposed. The goal of this review is to provide new insights into the design of immune-regulatory EVs and expand their application in cancer immunotherapy.


Assuntos
Vesículas Extracelulares , Neoplasias , Ácidos Nucleicos , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Imunoterapia , Lipídeos , Neoplasias/metabolismo , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA